6.3 Seeing Music

Practice Tasks

I. Concepts and Procedures

1. Graph the following functions. Then find the period, amplitude and phase shift of the function.
a. $\quad f(x)=\sin (2 x+\pi)$

b. $\quad f(\theta)=2+\sin 2\left(\theta-\frac{\pi}{4}\right)$

c. $\quad y=2 \cos \left(x-\frac{\pi}{2}\right)+2$

II. Problem Solving

The pitch (or note) of an instrument is determined by the frequency of the sound.
The frequency is found by determining the reciprocal of period

$$
\left(\text { frequency }=\frac{1}{\text { period }}, \text { or period }=\frac{1}{\text { frequency }}\right)
$$

Apply this formula to the following problems.

1. A tuba player in a marching band plays the note E. For a pure E to be played, the variation in pressure from normal air pressure is given by the function $V(t)=0.2 \sin 80 \pi t$, where V is measured in pounds per square inch and t in seconds.
a. What are the amplitude, period, and frequency of the function V ?
b. Sketch a graph of the function V.

2. The tuba player in the marching band from the previous question is not playing a G note. A pure G note can be represented with the trigonometric equation $V(t)=$ $0.2 \sin (49 \pi t)$, where V is measured in pounds per square inch and t is in seconds.
a. What are the amplitude, period, and frequency of the function V
b. Sketch a graph of the function V.

c. If the tuba player increases the loudness of the note, how does the equation for V change?
d. If the tuba player plays the note incorrectly and it is a little flat, how does the equation for V change? You may need to ask one of your musical classmates what it means for a note to be "flat."

3. The displacement of a mass suspended by a spring is modeled by the function $y=$ $10 \sin (4 \pi t)$, where y is measured in inches and t in seconds. Assume that the mass is at its resting position at time $t=0$.
a. Find the amplitude, period, and frequency of the motion of the mass.
b. Sketch the graph of the displacement of the mass.

III. Modeling

1. A mass is suspended by a string. The string is compressed a distance of 4 cm and then released. It is observed that the mass returns to the compressed position after $\frac{1}{3} \mathrm{~s}$.
a. Find a function that models the displacement of the mass.
b. Sketch the graph of the displacement of the mass

2. Go online and find a table of frequencies for musical notes (try googling something like "frequency of a note"). Pick your favorite musical note and write it below.

Note: \qquad Frequency: \qquad Hz

Using the frequency of your note, create a trigonometric function that models the note. Use a sine function and assume that the amplitude is 1.

